An Efficient Implicit OBDD-Based Algorithm for Maximal Matchings

نویسندگان

  • Beate Bollig
  • Tobias Pröger
چکیده

The maximal matching problem, i.e., the computation of a matching that is not a proper subset of another matching, is a fundamental optimization problem and algorithms for maximal matchings have been used as submodules for problems like maximal node-disjoint paths or maximum flow. Since in some applications graphs become larger and larger, a research branch has emerged which is concerned with the design and analysis of implicit algorithms for classical graph problems. Inputs are given as characteristic Boolean functions of the edge sets and problems have to be solved by functional operations efficiently supported by the chosen data structure. An OBDD is a well-known data structure for Boolean functions and sometimes capable to take advantage over the presence of regular substructures which may lead to sublinear graph representations. As a result OBDD-based algorithms are used as a heuristic approach to handle very large graphs. Here, an implicit OBDD-based maximal matching algorithm is presented that uses only a polylogarithmic number of functional operations with respect to the number of vertices of the input graph. In order to investigate the algorithm’s behavior on large and structured networks, it has been analyzed on grid graphs and it has been shown that the overall running time and the space requirement is also polylogarithmic.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global Forcing Number for Maximal Matchings under Graph Operations

Let $S= \{e_1,\,e_2‎, ‎\ldots,\,e_m\}$ be an ordered subset of edges of a connected graph $G$‎. ‎The edge $S$-representation of an edge set $M\subseteq E(G)$ with respect to $S$ is the‎ ‎vector $r_e(M|S) = (d_1,\,d_2,\ldots,\,d_m)$‎, ‎where $d_i=1$ if $e_i\in M$ and $d_i=0$‎ ‎otherwise‎, ‎for each $i\in\{1,\ldots‎ , ‎k\}$‎. ‎We say $S$ is a global forcing set for maximal matchings of $G$‎ ‎if $...

متن کامل

Structural Reliability: An Assessment Using a New and Efficient Two-Phase Method Based on Artificial Neural Network and a Harmony Search Algorithm

In this research, a two-phase algorithm based on the artificial neural network (ANN) and a harmony search (HS) algorithm has been developed with the aim of assessing the reliability of structures with implicit limit state functions. The proposed method involves the generation of datasets to be used specifically for training by Finite Element analysis, to establish an ANN model using a proven AN...

متن کامل

The number of maximal matchings in polyphenylene chains

A matching is maximal if no other matching contains it as a proper subset. Maximal matchings model phenomena across many disciplines, including applications within chemistry. In this paper, we study maximal matchings in an important class of chemical compounds: polyphenylenes. In particular, we determine the extremal polyphenylene chains in regards to the number of maximal matchings. We also de...

متن کامل

OBDDs and (Almost) $k$-wise Independent Random Variables

OBDD-based graph algorithms deal with the characteristic function of the edge set E of a graph G = (V,E) which is represented by an OBDD and solve optimization problems by mainly using functional operations. We present an OBDD-based algorithm which uses randomization for the first time. In particular, we give a maximal matching algorithm with O(log |V |) functional operations in expectation. Th...

متن کامل

Implicit Simulation of FNC Algorithms

Implicit algorithms work on their input’s characteristic functions and should solve problems heuristically by as few and as efficient functional operations as possible. Together with an appropriate data structure to represent the characteristic functions they yield heuristics which are successfully applied in numerous areas. It is known that implicit algorithms which execute t(N) functional ope...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012